0 Nuclear Matter and its Role in Supernovae , Neutron Stars and Compact Object Binary Mergers 1
نویسندگان
چکیده
The equation of state (EOS) of dense matter plays an important role in the supernova phenomenon, the structure of neutron stars, and in the mergers of compact objects (neutron stars and black holes). During the collapse phase of a supernova, the EOS at subnuclear densities controls the collapse rate, the amount of deleptonization and thus the size of the collapsing core and the bounce density. Properties of nuclear matter that are especially crucial are the symmetry energy and the nuclear specific heat. The nuclear incompressibility, and the supernuclear EOS, play supporting roles. In a similar way, although the maximum masses of neutron stars are entirely dependent upon the supernuclear EOS, other important structural aspects are more sensitive to the equation of state at nuclear densities. The radii, moments of inertia, and the relative binding energies of neutron stars are, in particular, sensitive to the behavior of the nuclear symmetry energy. The dependence of the radius of a neutron star on its mass is shown to critically influence the outcome of the compact merger of two neutron stars or a neutron star with a small mass black hole. This latter topic is especially relevant to this volume, since it stems from research prompted by the tutoring of David Schramm a quarter century ago.
منابع مشابه
The dynamic ejecta of compact object mergers and eccentric collisions.
Compact object mergers eject neutron-rich matter in a number of ways: by the dynamical ejection mediated by gravitational torques, as neutrino-driven winds, and probably also a good fraction of the resulting accretion disc finally becomes unbound by a combination of viscous and nuclear processes. If compact binary mergers indeed produce gamma-ray bursts, there should also be an interaction regi...
متن کاملTransient Events from Neutron Star Mergers
Mergers of neutron stars (NS+NS) or neutron stars and stellar mass black holes (NS+BH) eject a small fraction of matter with a sub-relativistic velocity. Upon rapid decompression nuclear density medium condenses into neutron rich nuclei, most of them radioactive. Radioactivity provides a long term heat source for the expanding envelope. A brief transient has the peak luminosity in the supernova...
متن کاملMergers of binary stars: The ultimate heavy-ion experience
The mergers of black hole-neutron star binaries are calcuated using a pseudo-general relativistic potential that incorporates O(v/c) post-Newtonian corrections. Both normal matter neutron stars and self-bound strange quark matter stars are considered as black hole partners. As long as the neutron stars are not too massive relative to the black hole mass, orbital decay terminates in stable mass ...
متن کاملPhases of Dense Matter in Neutron Stars
After a brief history of neutron stars and supernovae recent developments are discussed. Based on modern nucleon-nucleon potentials more reliable equations of state for dense nuclear matter have been constructed. Furthermore, phase transitions such as pion, kaon and hyperon condensation, superfluidity and quark matter can occur in cores of neutron stars. Specifically, the nuclear to quark matte...
متن کاملThe effect of supernova natal kicks on compact object merger rate
Mergers of compact objects may lead to different astrophysical phenomena: they may provide sources of observable gravitational radiation, and also they may be connected with gamma-ray bursts. Estimates of the rate with which such mergers take place are based on assumptions about various parameters describing the binary evolution. The distribution of one of these parameters the kick velocity a n...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2000